use std::{f64::consts::PI, sync::LazyLock};
pub const EPSILON: f64 = 1.0E-7;
pub static SIN: LazyLock<[f32; 65536]> = LazyLock::new(|| {
let mut sin = [0.0; 65536];
for (i, item) in sin.iter_mut().enumerate() {
*item = f64::sin((i as f64) * PI * 2.0 / 65536.0) as f32;
}
sin
});
pub fn sin(x: f32) -> f32 {
let x = x * 10430.378;
let x = x as i32 as usize & 65535;
SIN[x]
}
pub fn cos(x: f32) -> f32 {
let x = x * 10430.378 + 16384.0;
let x = x as i32 as usize & 65535;
SIN[x]
}
pub fn binary_search(mut min: i32, max: i32, predicate: &dyn Fn(i32) -> bool) -> i32 {
let mut diff = max - min;
while diff > 0 {
let diff_mid = diff / 2;
let mid = min + diff_mid;
if predicate(mid) {
diff = diff_mid;
} else {
min = mid + 1;
diff -= diff_mid + 1;
}
}
min
}
pub fn lcm(a: u32, b: u32) -> u64 {
let gcd = gcd(a, b);
(a as u64) * (b / gcd) as u64
}
pub fn gcd(mut a: u32, mut b: u32) -> u32 {
while b != 0 {
let t = b;
b = a % b;
a = t;
}
a
}
pub fn lerp<T: num_traits::Float>(amount: T, a: T, b: T) -> T {
a + amount * (b - a)
}
pub fn ceil_log2(x: u32) -> u32 {
u32::BITS - x.leading_zeros()
}
pub fn fract(x: f64) -> f64 {
let x_int = x as i64 as f64;
let floor = if x < x_int { x_int - 1. } else { x_int };
x - floor
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_gcd() {
assert_eq!(gcd(0, 0), 0);
assert_eq!(gcd(1, 1), 1);
assert_eq!(gcd(0, 1), 1);
assert_eq!(gcd(1, 0), 1);
assert_eq!(gcd(12, 8), 4);
assert_eq!(gcd(8, 12), 4);
assert_eq!(gcd(12, 9), 3);
assert_eq!(gcd(9, 12), 3);
assert_eq!(gcd(12, 7), 1);
assert_eq!(gcd(7, 12), 1);
}
#[test]
fn test_sin() {
const PI: f32 = std::f32::consts::PI;
fn assert_sin_eq_enough(number: f32) {
let a = sin(number);
let b = f32::sin(number);
assert!((a - b).abs() < 0.01, "sin({number}) failed, {a} != {b}");
}
assert_sin_eq_enough(0.0);
assert_sin_eq_enough(PI / 2.0);
assert_sin_eq_enough(PI);
assert_sin_eq_enough(PI * 2.0);
assert_sin_eq_enough(PI * 3.0 / 2.0);
assert_sin_eq_enough(-PI / 2.0);
assert_sin_eq_enough(-PI);
assert_sin_eq_enough(-PI * 2.0);
assert_sin_eq_enough(-PI * 3.0 / 2.0);
}
}